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ABSTRACT 

 
The Discovery Channel Telescope (DCT) is a 4.3-meter astronomical research telescope being built in northern Arizona 

as a partnership between Discovery Communications and Lowell Observatory.  We present an overview of the current 

status of the project software effort, including the iterative development process (including planning, requirements 

management and traceability, design, code, test, issue tracking, and version control), our experience with management 

and design techniques and tools the team uses that support the effort, key features of the component-based architectural 

design, and implementation examples that leverage new LabVIEW-based technologies. 
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1. INTRODUCTION 

After describing the system components and architecture, we summarize the current state of the development effort and 

describe the key technologies used on the project, then conclude with a look at the future. 

 

2.  SYSTEM OVERVIEW 

The DCT team has allocated system behaviors at the top level to the following stand-alone software components of these 

components further allocate behavior to subcomponents.  The components generally fall into two groups: instruments 

and telescope systems.  Figure 1 shows the DCT software high-level components. 
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     Figure 1.  DCT software high-level components. 

 

 

The telescope system components run as independent applications and publish and subscribe to data messages.  The 

Observatory Control System exercises a loose supervisory role.  Figure 2 shows the components of the telescope system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Figure 2.  Components of the telescope system. 



 

2.1 Mount control system 

This subsystem controls the motion of the azimuth, elevation, and Cassegrain rotator axes. 

2.2 Telescope control system 

This subsystem streams time-stamped position and velocity demands to the mount control system.  In addition, it sends 

expected target positions (in an ideal plane) to the guider control system and wavefront sensor, as well as atmospheric 

dispersion demands to the corrector.  This system incorporates guide target measured errors, secondary mirror positions, 

weather data, and dispersion corrector optical deviations into the pointing model to achieve the demanded pointing.  

Target demands arise from the user interface of this component or from external components. 

2.3 Observatory control system 

This component provides a supervisory role, monitoring system states and coordinating operations (when required) 

between components.  It will also provide a system-level user interface. 

2.4 Guider control system 

The guider provides feedback (guide error) based on the difference between the actual and predicted positions of the 

guide target.  It also measures the guide target image spot size. 

2.5 Wavefront sensor 

The wavefront sensor measures image quality and publishes fit residuals as bending mode coefficients (for primary 

mirror corrections) and a limited set of Zernike coefficients (for primary or secondary mirror corrections, depending on 

the optical configuration), as well as information required to calculate derived image quality. 

2.6 Instrument control system 

This component can send target demands to coordinate an observation.  Most additional functionalities are highly 

dependent on the particular instrument and are outside the scope of the project. 

2.7 Atmospheric dispersion corrector 

The corrector compensates for the dispersion as indicated by the telescope control system, and reports the resulting 

pointing offset (if any). 

2.8 Dome control system 

This component controls the dome azimuth rotation and shutter open and close operations.  It can track the demanded 

mount positions, move to a user-specified position, or move to a special position to support calibration operations. 

2.9 Active optics system 

This system optimizes image quality.  Correction factors will derive from calibration tables based on measured image 

quality at a set of elevation values and temperatures and from wavefront sensor feedback. 

 

When the telescope is operating in its Ritchey-Chrétien configuration, the active optics system controls the figure of the 

primary mirror and the tip, tilt, and piston of the secondary mirror.  When the telescope is operating in its prime focus 

configuration, the active optics system controls the figure, tip, tilt, and piston of the primary mirror. 

 

The active optics system includes the following controllers for the primary mirror: 

1. The system controls 36 lateral supports on a single pneumatic circuit via a pressure regulator.  Feedback to the 

controller derives from measurements from force transducers associated with three passive tangent definers. 

2. The system controls the tip, tilt, and piston of the primary mirror.  Feedback comes from four position sensors 

located around the outer diameter of the mirror and the output of the compensator is a suite of forces that forms 

the basis of setpoints for the axial support force loop. 



3. The system controls 120 axial support stepper motors.  Each stepper motor has its own controller.  In line with 

each actuator is a force transducer that provides feedback to the control loop. 

 

In addition, the active optics system includes the following controllers for the secondary mirror: 

1. The system maintains zero force on the volume between the secondary and the cell structure by controlling the 

state of four solenoid valves, two that gate vacuum and two that gate pressure, based on feedback from three 

force transducers and a differential pressure sensor. 

2. The system performs closed-loop position control of the secondary mirror using three axial actuators with 

feedback from position sensors. 

 

2.10 Environmental control system 

The team has assigned functionalities related to environmental monitoring and control to this component. These 

functionalities include measuring and controlling the ambient temperature at the observing level (based on feedback 

from a weather station and from temperature sensors located in the dome, the system influences the temperature by 

operating ventilation fans and opening and closing ventilation doors).  This system also controls the dome lamps and 

calibration screen lamps. 

2.11 Facility 

This system will provide feedback on the state of facility infrastructure systems. 

2.12 Catalog 

The Catalog will support the selection of telescope targets.  It will offer features such as bounds-checking and some 

search capabilities. 

2.13 Management 

This component will collect data on system utilization and provide basic facilities for analysis of this data. 

 

3. KEY ARCHITECTURAL CONCEPTS 

The system consists of loosely interacting components implemented as far as practicable with an Object-Oriented 

design. 

3.1 Component design 

Allocating functionality to stand-alone components as we have described above is a key feature of the software design.  

Each software component responds to external stimuli (data that arrives as signals) depending on its current state.  This 

is quite similar to the concept of Concurrent Components Communicating Anonymously (C
3
A) the Large Synoptic 

Survey Telescope LSST (team) has previously described.
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3.1.1 Communications 

The system supports asynchronous messaging largely via publish-subscribe protocols, but it also supports a basic 

TCP/IP message passing protocol (using ASCII commands) in the case of communications between the telescope control 

system and the mount control system. 

3.1.1.1 Publish-subscribe protocol 

Systems subscribe to signals bearing relevant data and publish data to a different set of signals.  A particular signal can 

support multiple subscribers.  Each client interacts only with the message server. 

 

The system has two types of message servers.  Communications between and within LabVIEW-based components 

utilize the National Instruments shared variable engine.  Communications outside this realm rely on an ActiveMQ 

message broker (an implementation of the Java Message Service API). 



3.1.1.2 Message content 

The message content takes several forms: 

1. ASCII strings for messages between the telescope control system and the mount control system. 

2. Native LabVIEW types where practical. 

3. LabVIEW objects flattened to strings where practical between LabVIEW-based components. 

4. An XML representation of data in the form of basic types or objects for communication between components 

written in different software languages.  For each relevant software language (LabVIEW and Java currently) we 

require an XML parser. 

3.1.2 Object-Oriented analysis and design 

For all the common reasons, most notably to provide for encapsulation and code reuse via generalization, we use Object-

Oriented designs.  The software team uses LabVIEW’s native Object-Oriented programming capabilities first released in 

the language in 2006 and extended to the real-time platform in 2009.  

 

4. PROGRESS HIGHLIGHTS 

We summarize progress to date on key system components. 

4.1 Mount control system 

General Dynamics SATCOM Technologies has implemented a version of the software for this component.  GDST 

customized software currently in use in other applications to create the current version. 

4.2 Telescope control system 

Observatory Sciences Limited, under contract to Lowell Observatory, has delivered a version of the telescope control 

system.  This component utilizes the TCSpk pointing kernel licensed by Tpoint Software.
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4.3 Observatory control system 

The team has developed a C++/LabVIEW ActiveMQ client and a LabVIEW-based XML interpreter that reside here. 

4.4 Guider control system and wavefront sensor 

The Lowell Instrument Group is currently developing software for the initial guider control system and wavefront 

sensor. 

4.5 Instrument control system 

The Lowell Instrument Group is developing software for common services and for specific instruments. 

4.6 Dome control system 

The team has completed software for the dome. 

4.7 Active optics system 

The team has completed the primary mirror control portions of the software for the active optics system.  Work on the 

secondary mirror is partially complete and implementation of the lookup tables and corrective factor calculations is 

ongoing. 

4.7.1 Testing 

The team completed testing for the primary mirror active optics system hardware (120 axial supports and 36 lateral 

supports) in early 2010. 

 

Tests for each axial actuator verified compliance with requirements for stiffness, hysteresis, stroke, electrical limit 

functionality, breakaway force limits and functionality, and closed loop performance.  The team developed a data 

analysis tool that retrieved data logged to the Citadel historical database, displayed the data, and performed a series of 



repeatable tests.  Analyses of early tests revealed issues with nonlinear force regions, out of range breakaway forces, and 

control loop performance with the existing plant.  The DCT design team resolved all these issues by applying a 

combination of electrical and mechanical solutions.  Subsequent testing revealed compliance with specifications. 

 

Tests for lateral supports examined freedom of motion of the diaphragms, leakage in the diaphragm and pneumatics, 

hysteresis, and rated load. 

4.8 Environmental control system 

The team has implemented software that publishes data from a weather station.  Additional software controls the 

ventilation fans and ventilation doors, as well as the dome lights. 

 

5. TECHNOLOGIES 

We describe some key implementation and software engineering technologies in use on the project. 

5.1 Software infrastructure 

We describe some of the key technologies used in the project.  For more details, see our other paper.
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5.1.1 LabVIEW 

The primary development environment the team uses is National Instruments LabVIEW, a graphical programming 

language previously used on the Sourthern Astrophyiscal Research (SOAR) Telescope,
4,5,6,7

 the Hobby-Eberly 

Telescope,
8
 and the South African Large Telescope (SALT).  LabVIEW allows the team to apply a single strategy for 

development on FPGAs, real-time, and PC platforms.  The team’s subjective experience is that graphical programming 

lends itself well to comprehension.  LabVIEW’s dataflow paradigm simplifies parallel programming. 

 

As noted above, LabVIEW now supports objects natively on PCs, real-time, and FPGA platforms.  

 

Many of DCT’s applications require real-time performance. We deploy the real-time controllers on a compact 

Reconfigurable Input Output (cRIO) platform from National Instruments.  Networked real-time FIFO-enabled shared 

variables provide a means of data communication between the controller and the outside world (including the view for 

the application, which runs on a PC).  The use of Ethernet-based communication eliminates the need for any data 

acquisition hardware inside any PCs, and allows access to data anywhere on the network. 

5.1.2 Networked shared variable 

The National Instruments LabVIEW shared variable provides a means of communicating using a publish-subscribe 

protocol native to LabVIEW.  For each application we deploy a shared variable engine (server) on a PC.  With the 

addition of the Datalogging and Supervisory Control (DSC) module we are able to utilize features such as logging to a 

Citadel historical database.  We host the server on a Windows machine rather than a cRIO, where applicable, since 

National Instruments only supports the logging features of the Datalogging and Supervisory Control (DSC) module on a 

Windows platform.  The most local PC hosts the server (rather than having one large server) to permit each system to 

operate stand-alone.  For data analysis we can merge databases later. 

 

The type of a shared variable generally can be a native LabVIEW type or a user-defined type.  The list of available 

types, however, does not include LabVIEW objects. 

 

Nonetheless, the team successfully implemented a version of the Object-Oriented Command Pattern
9
 utilizing string-

typed shared variables.    

 

The sending application flattens the object to write to a string (see Figure 3). 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 
 

     Figure 3.  Send object as flattened XML string. 

 

 

 

 

The receiving application unflattens the string to the parent command type (see Figure 4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Figure 4.  Unflatten command from XML and execute. 

 

 

Real-time FIFO-enabled shared variables have a more limited list of available types.  (Most notably, LabVIEW needs to 

know the message size at compile time.)  As a consequence, we limit shared variable communication to real-time 

systems to use a more restricted set of types. 

5.1.3 Java messaging service 

For messaging between nonLabVIEW components and between these components and LabVIEW we generally use an 

Apache ActiveMQ message broker (an implementation of the Java Message Service API).  The team developed a C++ 

client based on Apache’s existing CMS client.  When the C++ client receives a message via a callback from the message 

broker it generates a LabVIEW user event, which allows event-based message handling in the LabVIEW application as 

well. 

 



5.1.4 Historical database 

As noted above, applications log shared variable data to a Citadel historical database hosted on a Windows PC.  This off-

the-shelf solution has eliminated the task for the team to develop its own logging service.  The LabVIEW DSC module 

has methods for querying the database.  We found these to be sufficient, although it is possible to develop one’s own 

methods to query the database using SQL. 

 

Methods exist to archive or merge the databases. 

5.1.5 XML 

We use XML in the following ways: 

5.1.5.1 XML for communication between development environments 

XML provides us the ability to describe data in a common way.  We leverage this capability to share data (including 

object data) between platforms. 

 

The team uses an XML implementation based on SimpleXML.  Since this capability is not native to LabVIEW, the team 

had to create its own parser to handle object data.  The current implementation is necessarily nonoptimal in design 

(LabVIEW does not provide access to an object’s private data at run-time) but functional. 

 

Note that LabVIEW does have a native XML schema but we found this parser unsuitable for the purpose of sharing data 

between applications written in different development environments for the following reasons: 

1. LabVIEW’s native XML parser uses a somewhat unique schema that does not easily port to other development 

environments. 

2. When a LabVIEW object has default data LabVIEW’s XML schema merely represents the data as default, 

rather than fully expressing the data.  Consequently a receiving application requires access to LabVIEW’s 

definition of the object for interpretation. 

5.1.5.2 XML for storing configuration information 

The limitations of LabVIEW’s native parser are not problematic when used within LabVIEW. 

 

We have leveraged LabVIEW’s native XML capabilities to build an XML-based configuration handler.  The resulting 

application has the following benefits: 

1. The implementation uses the Object-Oriented Command Pattern.  The core functionality exists in a common 

object library. 

2. Implementing a configuration file handler for a new component requires little more than defining the particular 

data elements to display and their allowable input ranges. 

3. Data from each tab stores in a unique human-readable file, allowing for easy maintenance. 

4. Data from irrelevant controls does not appear in the configuration files. 

5.1.6 Component 

The team has implemented a Component class and related classes that include functionality common to the various 

components.  This functionality includes: 

1. Component-level state machine 

2. Timestamp information 

3. A loop timer 

4. Error information 

5. A handler for interrupts (for applications deployed on cRIO systems) 

6. RIO information (for applications deployed on cRIO systems) 

7. A handler for common signals (i.e., for handling errors, state change signals such as start, standby, exit) 

8. Configuration path information 



5.2 Software engineering tools 

The DCT team relies on a set of tools and technologies to optimize the development process. 

5.2.1 Requirements management 

Most requirements are currently in text-based documents or in a requirements database management tool (DOORS).  

The team has recently begun representing requirements as elements in a single model using SysML in Enterprise 

Architect. 

5.2.2 Version control 

The team uses Subversion for version control.  We use the TortoiseSVN client for most purposes, but Enterprise 

Architect interfaces to the Collabnet command line client. 

5.2.3 Schedule planning 

The team utilizes Microsoft Project for some aspects of planning.  

 

Recently the team has adopted the use of the Atlassian Greenhopper JIRA plug-in to help us monitor our schedule more 

closely.  This we see has the following advantages: 

1. Integration with JIRA 

2. Ability to log work 

3. Simple interface 

4. Ability to track iteration progress and burn-down rate 

5.2.4 Modeling 

The team uses Enterprise Architect for UML (and SysML) modeling applied to the following tasks: 

1. Provide illustrations to facilitate discussions of possible implementations 

2. Document designs and the resulting implementations 

3. Generate code.  (We have done this for Java classes.  LabVIEW does not support code generation from 

Enterprise Architect, although a different tool Endevo UML Modeller, does support LabVIEW code 

generation.) 

5.2.5 Testing 

The team has begun using Enterprise Tester to execute test procedures and to store and report on test results.  The team 

creates requirements and develops a test plan (using the structured scenario feature) in SysML in Enterprise Architect.  

The team then imports the requirements and test procedures into Enterprise Tester.  Enterprise Tester facilitates the 

execution of test procedures via execution sets, linking test results to requirements to complete the traceability path.  

Enterprise Tester generates a verification matrix that shows the current status of each requirement, and it can link to 

JIRA to generate issues when tests fail. 

5.2.6 Issue tracking 

The team uses Atlassian JIRA for issue tracking.  

 

6. REMAINING QUESTIONS 

Most of the remaining technical questions the team faces center on optimizing user interfaces.  For instance, we use 

plug-ins currently but we can certainly improve how we do this.  Unfortunately, creating dockable windows is not a 

native LabVIEW feature.  We need to improve graphical user interface (GUI) appearance stability across machines and 

monitors (we are almost there).  Most important, we need to apply appropriate design principles for visual flow. 
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